DALLAS March 22, 2007 Electrical noise, like the crackle heard on AM radio when lightning strikes nearby, is a nuisance that wreaks havoc on electronic devices. But within cells, a similar kind of biochemical "noise" is beneficial, helping cells transform from one state to another, according to a new study led by a UT Southwestern Medical Center researcher.
Dr. Grol Sel, assistant professor of pharmacology, said his research and that of his colleagues published today in the journal Science represents "a new paradigm," suggesting that rather than being bad for biology, cellular noise might have an important function, such as prompting stem cells to transform into a specific tissue type.
Electronic noise is an unwanted signal characteristic of all electrical circuits, typically caused by random fluctuations in the electric current passing through the components of a circuit. Similarly, within each living cell there are myriad "genetic circuits," each composed of a distinct set of biochemical reactions that contribute to some biological process. Randomness in those reactions contributes to biological noise, technically referred to as stochastic fluctuations.
"Noise in biological systems is a fact of life," said Dr. Sel, a member of the systems biology division of the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology at UT Southwestern. "Even though each cell may have the same set of genes turned on the same hard-wired genetic circuit there will still be slight variations in the amount of the various proteins those genes produce, some fluctuation in the amount of each circuit component. No two cells are alike in terms of their chemical composition."
Conventional scientific thinking has been that the random nature of such fluctuations within cells interferes with the reliable operation of biological systems. However, Dr. Sel's research team hypothesized that noise in one pa
'"/>
Contact: Amanda Siegfried
Amanda.siegfried@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
22-Mar-2007