According to Knoll imitation is a powerful shortcut to successful task learning. "If a robot learner is shown a certain behaviour necessary for solving a task by an instructor, the motion alternatives for producing the goal-reaching behaviour with the learner's own devices and effectors can be dramatically reduced," says Knoll. "The learner would then try to mimic the coarse motions of the instructor and adapt them to achieve the same goal."
Exploring the functional and neuropsychological mechanisms of imitation learning was the aim of the ArteSImit project funded by the Future and Emerging Technologies initiative of the IST programme. The overarching goal was to reveal the neurophysiological structures for finger and hand movements in humans and monkeys, and design a computer-operational dynamic model of imitation learning. The consortium constructed a fully functional visual-motor system for a limited domain to control a bio-analogue hand, which is thus capable of mimicking imitation behaviour.
The system implements the full visual serving loop in that it observes the environment with a camera, recognises the instructor's gestures from a set of predefined gestures, makes the necessary decisions to achieve the goal, i.e. the appropriate sequence of actions of the arm, hand and finger movements. This is optimised in such a way that it is achieved with the minimum amount of motion. The visual system is highly innovative and unique: it recognises finger positions in a precise way through a novel algorithm with just one camera.
"Our final objective was to implement imitational learning on this artificial hand and to suggest applications of the
'"/>
Contact: Tara Morris
tmorris@gopa-cartermill.com
322-286-1985
IST Results
8-Sep-2005