A new UC San Diego computer graphics model capable of generating realistic milk images based on the fat and protein content will likely push the field of computer graphics into the realms of diagnostic medicine, food safety and atmospheric science, according to a new study.
Computer graphics is no longer just about pretty pictures and realism for the sake of aesthetics. We have harnessed the math and physics necessary to generate realistic images of a wide range of natural materials based on what they are made of. With our approach, computer graphics can contribute to a handful of pressing problems, said Henrik Wann Jensen, a UC San Diego computer science professor and Academy Award winning computer graphics researcher. Jensen created the model with two colleagues from the Technical University of Denmark Niels Jrgen Christensen, an associate professor, and Jeppe Revall Frisvad, a Ph.D. student.
On August 8, 2007, the new graphics research will be presented at the Association for Computing Machinerys SIGGRAPH conference, the premier annual conference for the graphics and interactive techniques community.
If you tell the new computer graphics model how much fat and protein you want in your milk, the model will spit out the information you need to create a life-like milk image by determining how light will interact with your specified ratio of milk fats and proteins. Similarly, if you specify the concentration of algae and different minerals in a sample of ocean water, the same theoretical model will render the color of the water.
The new work extends well beyond milk and ocean water to a wide range of materials called participating media. The word participating refers to the fact that some of the light that hits the material is absorbed and not reflected.
In addition to creating images based on what the material is made of, the authors used the milk example to show that the new model can work backwards and determ
'"/>
Contact: Daniel B. Kane
dbkane@ucsd.edu
858-534-3262
University of California - San Diego
6-Aug-2007