In a study appearing this month in the Journal of Immunology, researchers at the University of Illinois describe how an impaired anti-inflammatory response plays a role in the pathology of type 2 diabetes.
Type 2 diabetes is classified as a metabolic disorder, but a growing number of researchers are beginning to think of it also as a disease of the innate immune system. Inflammation, a key component of the early immune response, is chronically elevated in people with type 2 diabetes. While the pro-inflammatory pathways of type 2 diabetes have received much attention, the anti-inflammatory side of the equation is less well known.
The new study focused on a number of cytokines, protein signals that bind to specific receptors on cells and set off a cascade of biochemical reactions within the cell. Interleukins, interferons, tumor necrosis factors and some growth factors are among the cytokines that direct many aspects of the immune response. Cytokines are secreted by many types of cells, including the immune cells known as macrophages.
In earlier studies, the researchers had shown that macrophages in diabetic and obese (diabese) mice secrete more pro-inflammatory and less anti-inflammatory cytokines than those of nondiabese mice. The team, led by pathology professor and department head Gregory Freund, also had demonstrated that human monocytes cultured under type 2 diabetic conditions had impaired interleukin-4 signaling. Interleukin 4 (IL-4) is an important player in the immune response in that it steers macrophages toward the production of other anti-inflammatory cytokines. It also inhibits secretion of the pro-inflammatory cytokines.
When IL-4 binds to its receptor on a target cell, it sets off one of two cascades of intracellular events.
The first of these signal transduction pathways, the Jak-STAT pathway, is well studied and well understood. The second, called the insulin receptor substrate 2 / phosphatidylinos
'"/>
Contact: Diana Yates
diya@uiuc.edu
217-333-5802
University of Illinois at Urbana-Champaign
14-Jun-2007