The research was conducted over the course of the last year and a half by teams from the laboratories headed by Pamela J. Green, Crawford H. Greenewalt Endowed Chair in Plant Molecular Biology, a joint appointment in the Department of Plant and Soil Sciences and the College of Marine Studies, and Blake C. Meyers, assistant professor of plant and soil sciences in the College of Agriculture and Natural Resources.
To identify the small RNAs, the scientists used the transcriptional profiling technology called Massively Parallel Signature Sequencing (MPSS), which was developed by Solexa Inc. of Hayward, Calif.
Green and Meyers pioneered the application of MPSS to small RNAs in collaboration with scientists at Solexa.
Green said that small RNAs are "one of most important discoveries in biotechnology in the last 10 years" because they play an important role in regulating genes in both plants and animals.
Deficiencies in small RNA production can have a profound effect on development, and small RNAs have been associated with other important biological processes, such as responses to stress.
Determining the sequence of the small RNAs of an organism is critical for understanding their overall impact and individual biological roles, Meyers said.
Although several thousand small RNAs have been identified from diverse plant and animal systems, these sequences were identified using older technologies that do not sequence deeply enough to characterize these molecules on a genome-wide scale. Quantitative information about the abundance and regulation of the majority of small RNAs also has been lacking.
With funding from the Nationa
'"/>
Contact: Neil Thomas
nfttwo@udel.edu
University of Delaware
1-Sep-2005