WEST LAFAYETTE, Ind. - In a study that could lead to new ways to prevent infection by human immunodeficiency virus (HIV) and similar organisms, Purdue University researchers have been able to genetically modify a plant to halt reproduction of a related virus.
Cauliflower mosaic virus attacks a group of plants that includes the largest number of agriculturally important plants in the world. The plant virus and HIV, which causes AIDS, use the same process to multiply in their victims' cells and spread disease.
"After HIV infects a person, it must recruit and latch onto particular human proteins so that the virus can replicate throughout the body," said Zhixiang Chen, a Purdue professor of botany and plant pathology. "We found that cauliflower mosaic virus relies on the same protein complex to multiply in plants."
Cauliflower mosaic virus, known as CaMV, attacks a plant group that includes cauliflower, broccoli, cabbages, turnips, canola and many types of mustard.
"We believe that the proteins in these host plants might be particularly important for these types of viruses, such as HIV, because if you block them, then the viruses simply can't replicate."
The retrovirus HIV and the pararetrovirus CaMV both use reverse transcription to recruit the host's proteins in order to reproduce and spread infection. Transcription in cells is the process in which a gene's DNA code is copied into RNA, which, in turn, carries the information to another part of the cell or to another cell. In reverse transcription, used by viruses such as HIV and CaMV, the virus' RNA is copied into DNA after it latches on to a victim's cell. This allows the virus to easily integrate into the host's genome and then reproduce in other cells.
Chen and his colleagues published a report on their study in the most recent issue of the journal The Plant Cell.
The researchers found that in the laboratory research plant Arabidopsis, caulifl
'"/>
Contact: Susan A. Steeves
ssteeves@purdue.edu
765-496-7481
Purdue University
31-Jul-2007