For each gene, Lahn and his colleagues counted the number of changes in the DNA sequence that altered the protein produced by the gene. They then obtained the rate of evolution for that gene by scaling the number of DNA changes to the amount of evolutionary time taken to make those changes.
By this measure, brain-related genes evolved much faster in humans and macaques than in mice and rats. In addition, the rate of evolution has been far greater in the lineage leading to humans than in the lineage leading to macaques.
This accelerated rate of evolution is consistent with the presence of selective forces in the human lineage that strongly favored larger and more complex brains. "The human lineage appears to have been subjected to very different selective regimes compared to most other lineages," said Lahn. "Selection for greater intelligence and hence larger and more complex brains is far more intense during human evolution than during the evolution of other mammals."
To further examine the role of selection in the evolution of brain-related genes, Lahn and his colleagues divided these genes into two groups. One group contained genes involved in the development of the brain during embryonic, fetal and infancy stages. The other group consisted of genes involved in "housekeeping" functions of the brain necessary for neural cells to live and function. If intensified selection indeed drove the dramatic changes in the size and organization of the brain, the developmental genes would be expected to change faster than the housekeeping genes during human evolution. Sure enough, Lahn's group found that the developmental genes showed much higher rate of change than the housekeeping genes.
In addition to uncovering the overall trend that brain-related genes -- particularly those involved in brain development -- evolved significantly fas
'"/>
Contact: Jim Keeley
keeleyj@hhmi.org
301-208-6560
Howard Hughes Medical Institute
28-Dec-2004