The project was a collaboration between applied physics researchers at Stanford University led by Adela Ben-Yakar and biologists at the University of California, Santa Cruz, led by Yishi Jin and Andrew Chisholm.
The team's findings give researchers an experimental system in which they will be able to investigate in great detail the genetic and molecular factors that control whether or not damaged nerves can regrow, said Chisholm, an associate professor of molecular, cell, and developmental biology at UCSC.
"This technique will enable us to find the genes that are important in allowing an axon to regenerate. In the worm, we can do systematic screening of large numbers of genes, and of drugs and other small molecules as well, to ask how they affect the process of regeneration," Chisholm said.
The researchers reported their findings in a paper published in the December 16 issue of the journal Nature. The first author of the paper is Mehmet Fatih Yanik, a Stanford graduate student in applied physics, who worked with Ben-Yakar to develop the laser nanosurgery setup used in the study. Ben-Yakar initiated a femtosecond laser nanosurgery project two years ago at Stanford and is currently an assistant professor of mechanical engineering at the University of Texas at Austin. The other coauthors include Jin, a professor of molecular, cell, and developmental biology at UCSC and a Howard Hughes Medical Institute investigator; Hulusi Cinar, a postdoctoral researcher in Jin's lab; and Hediye Nese Cinar, a postdoc
'"/>
Contact: Tim Stephens
stephens@ucsc.edu
831-459-2495
University of California - Santa Cruz
15-Dec-2004