A classic although purely practical example of working memory is our ability to look up a telephone number, remember it just long enough to dial it, and then promptly forget it. However, working memory is fundamental to many other cognitive processes including reading, writing, holding a conversation, playing or listening to music, decision-making, and thinking rationally in a general sense.
Cold Spring Harbor Laboratory computational neuroscientist Carlos Brody (brody@cshl.edu) explores how brain neurons interact with each other to form the circuits or "neural networks" that underlie working memory and other rapid and flexible cognitive processes.
In the new study, Brody's group developed a mathematical model for interpreting data collected at Universidad Nacional Autnoma de Mxico by his collaborator Rodolfo Romo. Romo's group measured brain neuron activity of macaque monkeys while the animals performed a simple task that involves working memory.
In one version of the task, animals were trained to compare an initial stimulus (a vibration applied to a fingertip) with a second stimulus applied a few seconds later and to immediately provide a "yes" or "no" answer to the question "was the first vibration faster than the second?"
This behavior requires the animals to load the initial stimulus into their working memory ("loading phase"), hold information about that sti
'"/>
Contact: Peter Sherwood
sherwood@cshl.edu
516-367-6947
Cold Spring Harbor Laboratory
17-Feb-2005