AMES, Iowa -- A team of Iowa State University plant scientists and materials chemists have successfully used nanotechnology to penetrate plant cell walls and simultaneously deliver a gene and a chemical that triggers its expression with controlled precision. Their breakthrough brings nanotechnology to plant biology and agricultural biotechnology, creating a powerful new tool for targeted delivery into plant cells.
The research, "Mesoporous Silica Nanoparticles Deliver DNA and Chemicals into Plants," is a highlighted article in the May issue of Nature Nanotechnology. The scientists are Kan Wang, professor of agronomy and director of the Center for Plant Transformation, Plant Sciences Institute; Victor Lin, professor of chemistry and senior scientist, U.S. Department of Energys Ames Laboratory; Brian Trewyn, assistant scientist in chemistry; and Francois Torney, formerly a post-doctoral scientist in the Center for Plant Transformation and now a scientist with Biogemma, Clermond-Ferrand, France.
Currently, scientists can successfully introduce a gene into a plant cell. In a separate process, chemicals are used to activate the genes function. The process is imprecise and the chemicals could be toxic to the plant.
"With the mesoporous nanoparticles, we can deliver two biogenic species at the same time," Wang said. "We can bring in a gene and induce it in a controlled manner at the same time and at the same location. Thats never been done before."
The controlled release will improve the ability to study gene function in plants. And in the future, scientists could use the new technology to deliver imaging agents or chemicals inside cell walls. This would provide plant biologists with a window into intracellular events.
The Iowa State team, which has been working on the research in plants for less than three years, started with an Iowa State University proprietary technology developed previously by Lins research group.
'"/>
Contact: Kan Wang
kanwang@iastate.edu
515-294-4429
Iowa State University
16-May-2007