A signaling system involved in many forms of leukemia and lymphoma is more powerful than scientists have thought, exerting control over our genes by affecting whole swaths of chromosomes in global fashion, according to a paper in the September issue of Nature Genetics and appearing online August 6.
While the research involving a cellular signaling system known as JAK/STAT focused on complex questions involving the roots of cancer, the answers the researchers got came very simply and clearly in red and white. By looking at the eye color of a variety of mutant flies, the team at the University of Rochester Medical Center made a surprising finding about a known cancer gene that meshes nicely with current trends in cancer drug research.
Instead of developing drugs that target a single gene or protein, many companies are taking aim at the way whole sets of genes are packaged in an attempt to turn on or off several genes at a time. It's part of a field known as "epigenetics": Now that the sequence of chemical bases that make up our genes is largely known, scientists are turning more attention to broader mechanisms of how the body controls those genes, turning them on and off as needed.
It's a crucial issue for diseases like cancer, where many genes are turned on or off when or where they shouldn't be, causing cells to grow out of control. A system similar to JAK/STAT in humans, for instance, is vital for normal health, helping us fight disease and grow new blood cells, but when its signals run amok, those people are much more likely to get any one of several types of leukemia or lymphoma.
To learn more about how JAK/STAT works, a team led by Willis Li, Ph.D., assistant professor in the Department of Biomedical Genetics, devised a complex experiment involving fruit flies. Researchers created flies with normal amounts of the signaling system and compared them to mutant flies with increased or decreased JAK/STAT signaling. They mo
'"/>
Contact: Tom Rickey
tom_rickey@urmc.rochester.edu
585-275-7954
University of Rochester Medical Center
6-Aug-2006