CAMBRIDGE, Mass. -- MIT researchers have identified a critical link between two proteins found in brain tumors, a discovery that could eventually help treat a form of brain cancer that kills 99 percent of patients.
Glioblastoma multiforme (GBM), the most aggressive brain tumor in adults, strikes about 15,000 people in the United States each year. GBM is currently treated with a combination of surgery, radiation and chemotherapy, but those treatments have proven ineffective. Most patients die within a year.
Now, MIT scientists have uncovered a connection between two proteins found in the tumor cells, and they have demonstrated that attacking both of those proteins kills tumor cells much more effectively than targeting either one alone.
The researchers, led by Forest White, MIT associate professor of biological engineering, report their findings in the early online edition of the Proceedings of the National Academy of Sciences for the week of July 16-20.
Their work could guide drug developers seeking treatments for GBM, which has proven resistant to all drugs that have been tried against it.
The team focused on a protein called EGFRvIII, a mutated form of the cell receptor for epidermal growth factor (EGF). The mutated receptor, which is found in approximately a quarter of GBM tumors, is continuously active and relentlessly pushes cells to keep growing and dividing.
Doctors have tried treating GBM patients with drugs that inhibit EGFRvIII, but they have had little effect. This could be because the continuous stimulation of the receptor is so intense and because the receptor interacts with numerous other proteins that also promote tumor growth, said White, who is also affiliated with MITs Center for Cancer Research and its Computational and Systems Biology Initiative.
The researchers believe it is the cumulative action of EGFRvIII and those other proteins that leads to tumor growth.
It
'"/>
Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
19-Jul-2007