That's what researchers from Ohio State and Northwestern universities report in a study published in the current issue of the journal PLoS Pathogens. The scientists were surprised to learn that the pathogen that causes malaria in humans and the microbe that caused the Irish potato famine use identical protein signals to start an infection.
"I don't think anyone expected this," said Sophien Kamoun, a study co-author and an associate professor of plant pathology at Ohio State's Ohio Agricultural Research and Development Center in Wooster. "These are very different pathogens, and we never realized that there might be some similarities between them."
Kamoun says not to worry there's no chance that the potato pathogen will jump to humans, nor is it likely that the malaria parasite will start infecting plants.
However, he said it's feasible to think that one day researchers could develop a drug with a dual purpose one that would stop both Plasmodium falciparum, which causes malaria, and Phytophthora infestans, the microbe that triggers late potato blight in vegetables including potatoes, soybeans and tomatoes.
"It sounds crazy, but it's not totally ridiculous to consider such a drug," said Kamoun, who is an expert on the Phytophthora group of pathogens. He conducted the study with lead author Kasturi Haldar, of Northwestern, and with colleagues from both Ohio State and Northwestern.
Each year, malaria kills more than one million people mostly young African children and Phytophthora pathogens devastate a wide range of food and commercial crops.
The researchers swapped a small sequence of proteins, called the leader sequence, in P. falciparum with the leader sequence of P. infestans. A leader
'"/>
Contact: Sophien Kamoun
Kamoun.1@osu.edu
330-263-3847
Ohio State University
26-May-2006