Their results also provide insights into the evolution of the microbial production of methane, the primary component of natural gas. A detailed understanding of methane biosynthesis could lay the foundation for a new alternative energy source, by raising the possibility of cost-efficient conversion of renewable biomass into clean fuel.
James G. Ferry is Stanley Person Professor of Biochemistry and Molecular Biology, and Christopher House is Assistant Professor of Geosciences, both at Penn State. They will announce their new theory in the June issue of Molecular Biology and Evolution. William Martin, editor-in-chief of that journal, says "The paper is a very significant contribution, and a wonderful example of interdisiplinary work as well."
"We've taken a new approach to thinking about the evolution of life from a thermodynamic perspective," Ferry says. "It reshapes the two previous theories of life's origin, it shows how they overlap, and it extends both of them significantly." The apparently irreconcilable "heterotrophic" and "chemoautotrophic" theories of the origin of life both focus on the processes by which chemical building blocks first appeared for primitive life to assemble into complex molecules. "But that's not really what the driving force was in early evolution," Ferry asserts. "Nobody had properly considered thermodynamics."
"The problem of ea
'"/>
Contact: Barbara K. Kennedy
science@psu.edu
814-863-4682
Penn State
12-May-2006