ANN ARBOR, Mich. University of Michigan scientists have received a pilot grant of nearly $1.3 million from the Defense Advanced Research Projects Agency to test whether nanoparticles can solve a pressing problem in battle zones like Iraq: how to administer sustained, safe doses of the most effective painkillers to injured soldiers, long before they can reach expert medical help.
The ultimate goal is to develop tiny drug-bearing particles that a fellow soldier or perhaps the injured soldier himself could inject with a pen-like device, even in the heat of combat. That would solve one of the challenges now. Morphine, an effective painkiller that the military commonly uses for the acute pain of battle injuries, currently needs to be injected by skilled medical personnel and has to be monitored carefully to control its troublesome tendency to suppress normal breathing.
This proposal provides an approach to achieve sustained, safe pain control on the battlefield, says the U-M research teams leader, James R. Baker, Jr., M.D., director of the Michigan Nanotechnology Institute for Medicine and Biological Sciences.
It uses different medicines coupled to polymers to release drugs and antidotes to provide adequate pain relief while avoiding complications. If successful, it could markedly improve the treatment of soldiers in the field, says Baker, the Ruth Dow Doan Professor of Internal Medicine in the U-M Medical School.
The work could have a broad impact. In the war in Iraq, more than 26,900 U.S. soldiers have been wounded in action as of late July. Its known that battlefield pain, if not relieved adequately, can lead to post-traumatic stress disorders.
A large multidisciplinary team of U-M scientists will use the grant to design multipurpose nanoparticles and test how well they perform several tasks under simulated physiological conditions in the laboratory. Ultimately, they want the particles to be able to: