"Because we see a fairly constant step size, we don't believe a tug of war is occurring," Selvin said. "If the dynein was fighting the kinesin, we would expect to see a lot of smaller steps as well."
The researchers also noted that faster movements occurred with the same step size, but with greater rapidity. When measured outside the cell, kinesin moved about 0.5 microns per second. Inside the cell, the speed increased to 12 microns per second.
"There must be a mechanism that allows the peroxisomes to move by multiple motors much faster than independent, uncoupled kinesins and dyneins," Selvin said. "It appears that motors are somehow regulated, being turned on or off in a fashion that prevents them from simultaneously dragging the peroxisome."
In the future, Selvin wants to combine FIONA and an optical trap technique to monitor the speed and direction of a peroxisome, and the force acting upon it.
"By measuring force we can determine how many molecular motors are working together," Selvin said. "This will help us further understand these marvelous little machines."
'"/>
Contact: James E. Kloeppel, Physical Sciences Editor
kloeppel@uiuc.edu
217-244-1073
University of Illinois at Urbana-Champaign
7-Apr-2005