Using the new assay, described this week in the journal Science, researchers led by Harvard's X. Sunney Xie counted, one by one, protein molecules generated in small bursts within cells as multiple ribosomes bound to single copies of mRNA complete the process by which DNA, an organism's long-term genetic repository, yields its crop of proteins. These random, or stochastic, bursts of protein expression are described in detail in a separate paper Xie and colleagues present this week in Nature.
"Although central to life processes, the expression of many important genes takes place at very low levels, making it difficult or impossible to observe using current technologies," says Xie, professor of chemistry and chemical biology in Harvard's Faculty of Arts and Sciences. "Our experiments provide the most sensitive means to date of observing real-time activity of single molecules inside cells. This new technique could provide us with unprecedented insights into gene expression and many other fundamental biological processes in living cells."
The central dogma of molecular biology holds that DNA is transcribed into mRNA, which is then translated into proteins. But several technical hurdles have hampered study of these key processes. Researchers' current understanding of this two-step pathway is built upon their averaging of genetic and biochemical activity across large populations of cells and molecules, masking the essential randomness of the process at the cellular level. Furthermore, much of our knowledge on the workings of the molecular m
'"/>
Contact: Steve Bradt
steve_bradt@harvard.edu
617-496-8070
Harvard University
15-Mar-2006