Tallahassee, Fla. -- A microscopy technique pioneered with the help of Florida State University's National High Magnetic Field Laboratory has led to the development of a new light microscope capable of looking at proteins on a molecular level.
The new light microscope is so powerful it allows scientists to peer deep inside cells to see the fundamental organization of the key structures within. Developed by researchers at Howard Hughes Medical Institute's Janelia Farm Research Campus in Virginia and the National Institutes of Health, in collaboration with FSU researchers Michael Davidson and Scott Olenych, the microscope is a boon to basic cell biology.
"As the technology advances, it may prove to be a key factor in unlocking the molecular-level secrets of intracellular dynamics," said Davidson, who directs the magnet lab's Optical Microscopy Group.
The microscope and technology appear online in the Aug. 10 issue of Science Express.
The idea for the light microscope and the related new method, called photoactivated localization microscopy, or PALM, was conceived by physicists Eric Betzig and Harald Hess of the Howard Hughes Medical Institute, but they struggled with how to realize their vision. It was biological tools being studied in Davidson's lab that ultimately inspired the two physicists' plan to build a better microscope.
"In the world of biology, there is a new generation of fluorescent proteins that you can switch on at will with a little bit of violet light," Hess said. He and Betzig learned of these molecules, pioneered by Jennifer Lippincott-Schwartz and George Patterson at NIH, during conversations with Davidson.
Davidson suggested that these "optical highlighters" would be the best candidates for Betzig and Hess' experiments. Davidson's group then genetically engineered the highlighters and fused them to natural proteins in his lab. This technique allowed the researchers to attach a label t
'"/>
Contact: Michael Davidson
mdavidson@cites.fsu.edu
850-644-5364
Florida State University
15-Aug-2006