The research appears in the 7 October issue of the journal Science, published by AAAS, the nonprofit science society.
The Spanish flu virus is more closely related to avian flu viruses than other human flu viruses. Many experts say that it is only a matter of time before an avian flu outbreak occurs in humans and develops into a global pandemic, potentially costing millions of lives.
Therapies against a new flu strain would need to disarm the parts of the virus that do the most damage to the body. In order to learn which components of the virus would be the best targets for such therapies, Terrence Tumpey of the Centers for Disease Control and Prevention and his colleagues revisited the 1918 Spanish flu virus.
Their results may also provide a benchmark for measuring the potential virulence of future flu strains as they emerge.
Using the virus' genome sequence, whose final three genes are being published simultaneously this week in Nature, Tumpey's group created a live virus with all eight of the Spanish flu viral genes. The genome sequence information was recovered in fragments from lung autopsy materials and lung tissues from a flu victim who was buried in the Alaskan permafrost in 1918.
The virus is contained at the Centers for Disease Control and Prevention (CDC), following stringent safety conditions designated for flu viruses and heightened security elements mandated by the CDC's Select Agent program.
"We felt we had to recreate the virus and run these experiments to understand the biological properties that made the 1918 virus so exceptionally deadly. We wanted to identi
'"/>
Contact: Natasha Pinol
npinol@aaas.org
1-202-326-7088
American Association for the Advancement of Science
5-Oct-2005