Blacksburg, Va., May 23, 2007 -- The hydrogen economy is not a futuristic concept. The U.S. Department of Energy's 2006 Advance Energy Initiative calls for competitive ethanol from plant sources by 2012 and a good selection of hydrogen-powered fuel cell vehicles by 2020.
Researchers at Virginia Tech, Oak Ridge National Laboratory (ORNL), and the University of Georgia propose using polysaccharides, or sugary carbohydrates, from biomass to directly produce low-cost hydrogen for the new hydrogen economy.
According to the DOE, advances are needed in four areas to make hydrogen fuel an economical reality for transportation production, storage, distribution, and fuel cells. Most industrial hydrogen currently comes from natural gas, which has become expensive. Storing and moving the gas, whatever its source, is costly and cumbersome, and even dangerous. And there is little infrastructure for refueling a vehicle.
"We need a simple way to store and carry hydrogen energy and a simple process to produce hydrogen, said Y.-H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech.
Using synthetic biology approaches, Zhang and colleagues Barbara R. Evans and Jonathan R. Mielenz of ORNL and Robert C. Hopkins and Michael W.W. Adams of the University of Georgia are using a combination of 13 enzymes never found together in nature to completely convert polysaccharides (C6H10O5) and water into hydrogen when and where that form of energy is needed. This "synthetic enzymatic pathway"research appears in the May 23 issue of PLoS ONE, the online, open-access journal from the Public Library of Science (www.plosone.org).
Polysaccharides like starch and cellulose are used by plants for energy storage and building blocks and are very stable until exposed to enzymes. Just add enzymes to a mixture of starch and water and "the enzymes use the energy in the starch to break up water into only carbon dioxide and
'"/>
Contact: Susan Trulove
STrulove@vt.edu
540-231-5646
Virginia Tech
22-May-2007