It's essential to all life, and numerous research papers are published about it every year. Yet there are still secrets to reveal about water, that seemingly simple compound we know as H2O.
Equipped with high-speed computers and the laws of physics, scientists from the University of Delaware and Radboud University in the Netherlands have developed a new method to "flush out" the hidden properties of water--and without the need for painstaking laboratory experiments.
Their new first-principle simulation of water molecules--based exclusively on quantum physics laws and utilizing no experimental data--will aid science and industry in a broad range of applications, from biological investigations of protein folding and other life processes, to the design of the next generation of power plants.
The research is reported in the article "Predictions of the Properties of Water from First Principles" in the March 2 issue of Science, a prestigious international journal.
Krzysztof Szalewicz, professor of physics and astronomy at the University of Delaware, led the scientific team, which included Robert Bukowski, a former UD postdoctoral researcher who is now at Cornell University, and Gerrit Groenenboom and Ad van der Avoird from the Institute for Molecules and Materials at Radboud University in Nijmegen, Netherlands. The UD research was sponsored by the National Science Foundation.
We all know a molecule of water chemically as H2O--two hydrogen atoms bonded to one oxygen atom. Sounds simple, doesn't it? But liquid water is much more complex than that.
"Water as a liquid is not simple at all and has several properties different from most other liquids," Szalewicz said. "For example, a well-known anomaly of water is that its density is highest at four degrees Celsius above the freezing point. Thus, ice floats on water, whereas the solid state of other compounds would sink in their liquids."
Among its m
'"/>
Contact: Tracey Bryant
tbryant@udel.edu
302-831-8185
University of Delaware
2-Mar-2007