The study examines the function of a protein called HBZ, which is made by the human T cell leukemia virus type 1 (HTLV-1), a retrovirus and a distant cousin to HIV, the cause of AIDS.
The findings indicate that HBZ enhanced the ability of HTLV-1 to establish a persistent infection in an animal host. The study by researchers with the Ohio State University Comprehensive Center and the College of Veterinary Medicine is published in the May issue of the journal Blood.
The gene that gives rise to HBZ is unusual because it lies on the wrong side of the virus's DNA molecule. Such genes are known as antisense genes, and they have been observed in only a few retroviruses, including HIV.
A DNA molecule is somewhat like a railroad track that is twisted into a double helix. The two rails correspond to the complementary strands of the DNA backbone, while the ties correspond to the chemical base pairs that hold the two strands together and encode genetic information.
Normally, that genetic information is encoded only along one DNA "rail," or strand. That strand is called the sense strand. The opposite strand is the antisense strand, and it generally carries no genetic information.
But HTLV-1 is a rare exception. Of its eight genes, (some of which have information for more than one protein), seven lie along the sense strand. The eighth, which encodes the HBZ gene, is on the antisense strand (where it lies across from portions of three genes on the sense strand).
"Encoding a gene on the antisense strand is one more way for a small, compact virus to pack more genetic information or genes into a very small space, and it is why viruses like HTLV and HIV are called complex retroviruses," says principal investigator Patrick L. Green, professor of veterinary bio
'"/>
Contact: Darrell E. Ward
Darrell.Ward@osumc.edu
614-293-3737
Ohio State University
8-Jun-2006