Kiang and graduate student Nolan Harris's new approach to probing these energy states yields something akin to a map of the rollercoaster's path. For example, theirs is the only experimental method that can reveal the slope and height of the energy barrier that the protein must overcome.
"Other experimental methods give researchers a pretty clear picture of the energy states at the beginning and the end -- the two equilibrium states," Kiang said. "Our approach helps fill in what happens in between, when the system is between folded and unfolded."
Kiang and Harris's experiments were conducted on one piece of a protein named Titin. The Titin piece, dubbed I27, contains 89 amino acids. Harris suspended thousands of intact, folded I27s in a dilute saline solution and let the solution sit long enough for the proteins to become stuck to the bottom of the sample dish. The needle from an atomic force microscope (AFM) was repeatedly dipped into the solution. The tip of the AFM operates much like a phonograph needle. The AFM needle is on the end of a cantilever arm that bobs up and down over the sample. The tip of the AFM needle is just a few atoms wide. Bobbing down, it randomly grabbed I27s that were pulled into their string-like, unfolded shape as the needle rose.
Harris measured the force exerted on the cantilever arm each time an I27 was unfolded. To get the energy maps, he wrote software incorporating a statistical mechanics equation called the "Jarzynski equality." The equation related the non-equilibrium energy from the unfolding events to the equilibrium profiles along the trajectory from the folded to the unfolded state. Kiang said the software, a
'"/>
Contact: Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University
19-Jul-2007