"The metabolic profile in biofluids, such as blood and urine, provides a snapshot of ongoing biological processes in the human body," Raftery said. "This type of analysis could be a key to earlier detection of diseases. Metabolic analysis is currently being developed to identify diseases such as cancer and cardiovascular disease. However, we need to continue to work to refine and improve the techniques to provide early detection."
Raftery and his team used nuclear magnetic resonance spectroscopy, a cousin of magnetic resonance imaging, which provides a reproducible and quantitative measure that provides the broadest spectrum of molecules for metabolite profiling. The spectrum is represented by a pattern of peaks corresponding to different frequencies that can be used to identify the molecules like amino acids in biofluids. Each metabolite has a unique pattern of peaks.
Researchers use nuclear magnetic resonance to detect hydrogen or carbon atoms to provide insight into the metabolites present, however this standard approach has disadvantages, Raftery said. The signals from carbon atoms are very weak and are difficult to detect, while the signals from hydrogen atoms often overlap. In particular, metabolites present in high concentrations overlap those present in low concentrations.
Raftery and his team enhanced the visibility of a certain type of metabolites, amino acids, by chemically tagging the molecules of interest so that they are more easily visible.
"We added a chemical that reacts with the amino acids and similar metabolites and forms a tag that can be seen through nuclear magnetic resonance," he said. "The ta
'"/>
Contact: Elizabeth K. Gardner
ekgardner@purdue.edu
765-494-2081
Purdue University
18-Jul-2007