Researchers have shown how ultrasound energy can briefly "open a door" in the protective outer membranes of living cells to allow entry of drugs and other therapeutic molecules and how the cells themselves can then quickly close the door. Understanding this mechanism could advance the use of ultrasound for delivering gene therapies, targeting chemotherapy and administering large-molecule drugs that cannot readily move through cell membranes.
Using five different microscopy techniques, the researchers showed that the violent collapse of bubbles an effect caused by the ultrasound creates enough force to open holes in the membranes of cells suspended in a liquid medium. The holes, which are closed by the cells in a matter of minutes, allow entry of therapeutic molecules as large as 50 nanometers in diameter larger than most proteins and similar in size to the DNA used for gene therapy.
"The holes are made by mechanical interaction with the collapsing bubbles," said Mark Prausnitz, a professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. "The bubbles oscillate in the ultrasound field and collapse, causing a shock wave to be released. Fluid movement associated with the resulting shock wave opens holes in the cell membranes, which allow molecules from the outside to enter. The cells then respond to the creation of the holes by mobilizing intracellular vesicles to patch the holes within minutes."
Ultrasound is the same type of energy already widely used for diagnostic imaging. Drug delivery employs higher power levels and different frequencies, and bubbles may be introduced to enhance the effect.
Ultrasound drug delivery could be particularly attractive for gene therapy, which has successfully used viruses to insert genetic material into cells but with side effects. It could also be used for more targeted delivery of chemotherapy agents.
"One of
'"/>
Contact: John Toon
jtoon@gatech.edu
404-894-6986
Georgia Institute of Technology Research News
5-Sep-2006