Feverish fruit fly larvae, warmed in a toasty lab chamber, are giving Cornell researchers a way to watch chromosomes in action and actually see how genes are expressed in living tissue.
Using multiphoton fluorescence microscopy, a technique pioneered at Cornell by physicist Watt W. Webb, researchers have for the first time been able to watch chromosomes change their form in order to activate their genes to synthesize key proteins in fruit fly cells. The advance could be a significant step toward understanding the basic processes that underlie gene expression.
The discovery was the result of cross-disciplinary collaboration between Webb and John Lis, Cornell's Barbara McClintock Professor of Molecular Biology and Genetics. Jie Yao, who recently earned his Ph.D. at Cornell, initiated and facilitated the work.
"This technology will revolutionize the way we see gene expression in organisms," said Lis. "We're watching transcription in real time in living cells."
The research was described in the Aug. 31 issue of the journal Nature.
The team's experiments focused on gene regulatory mechanisms: specifically, what happens in a cell's nucleus when an external stimulus (heat) prompts specific genes to activate, and how those activated genes direct the production of proteins, which protect the fly against the stress of heating.
"Whenever a cell is stressed -- bingo, it will produce proteins that will help the cell resist stress," said Webb, Cornell professor of applied physics and the S.B. Eckert Professor in Engineering. The process is triggered by a molecule called heat shock factor (HSF), which interacts with genes to cue the synthesis of new proteins. But this well-known process had never been seen in living cells.
Yao used multiphoton microscopy (MPM) to image living salivary gland tissue of
Drosophila (fruit flies). Unlike other methods, which lack penetrating power and can damage the specimen, MPM delivers crisp, clear im
'"/>
Contact: Press Relations Office
pressoffice@cornell.edu
607-255-6074
Cornell University News Service
22-Sep-2006