Researchers from Italy, Germany and Switzerland developed a 'feeling' robot by developing a new sensor modelled on hypersensitive mouse whiskers. These AMouse researchers developed a large series of different sensors based on a wide variety of 'whisker' types. These new sensors were then added to mainly standard Khepera research robots.
This not only gave the researchers insight into how mouse whiskers do their job, it also enabled them to develop prototypes that can be used to distinguish between different textures or an object.
The team demonstrated a real zest for innovation in their whisker design. One team from the University of Zurich used a variety of materials, from plastic to human hair. This was attached to the condenser plate of a microphone.
As the whisker encountered an object or surface, the whisker deformed the microphone diaphragm in a measurable way, allowing researchers to track characteristic signals from particular surfaces. The researchers then experimented with various whisker arrays and designs, to discover the optimal profile.
Even more exciting, however, were the results from 'multimodal' sensor experiments. These use a combination of vision and touch through whisker and light or camera sensors. The mix of sensory inputs revealed how different data sources affect each other and how they combine to provide a clearer perception of any particular object. Some robots even manifested emergent behaviour.
Emergent behaviour is a primary characteristic of life. In biological systems the combination of various data, like touch and sight, reinforces specific neural pathways. These pathways come to dominate and can cause an entity to 'beha
'"/>
Contact: Tara Morris
tmorris@gopa-cartermill.com
322-286-1985
IST Results
15-Nov-2005