Rutgers chemistry researchers Hideaki Shirota and Edward Castner, writing in the American Chemical Society's Journal of Physical Chemistry B, describe chemicals that can perform many of the same functions as organic, petroleum-based solvents but will not burn or evaporate into the atmosphere. Thus, the chemicals wouldn't contribute to air pollution and would likely cut the risk of workplace accidents.
The chemicals, known as room temperature ionic liquids (RTILs), can be used in industries such as chemical and pharmaceutical manufacturing, electroplating, pulp and paper production, and radioactive waste handling.
A major barrier to widespread adoption of RTILs is that they are significantly thicker or more viscous than common organic solvents, such as acetone, alcohol or benzene. The Rutgers scientists invented a variant of these chemicals that could help them overcome this problem.
"RTIL viscosity compares to traditional solvents the way honey compares to water," Castner said. "It impedes their flow, making lab procedures more difficult and manufacturing steps more energy intensive and costly. We have discovered that by substituting silicon for carbon at a key location in some RTIL molecules, we can cut the liquid's viscosity almost tenfold relative to the same ionic liquid without the silicon substitution."
In spite of RTIL's safety and environmental advantages, higher costs could slow their adoption. Still, the Rutgers advance could make these chemicals suitable for some near-term specialty applications even though it may be too early to predict a widespread industrial market for RTILs.
<
'"/>
Contact: Carl Blesch
cblesch@ur.rutgers.edu
732-932-7084 x616
Rutgers, the State University of New Jersey
21-Oct-2005