The findings, reported in this week's Proceedings of the National Academy of Sciences, should accelerate stem cell research and offer new insights into cell biology that could aid in the development of treatments for diseases such as cancer and Parkinson's.
Embryonic stem cell research has been plagued by problems arising from undefined conditions for growing and differentiating stem cells. Embryonic stem cell culture dishes are commonly coated with inactivated fibroblast cells known as "feeder cells." These feeder cells offer embryonic stem cells a suitable attachment surface and also release largely uncharacterized nutrients into the culture medium that support stem cell growth in the undifferentiated state. A variety of other factors are also added to promote stem cell growth and, most importantly, force the cells to maintain their pluripotency-their ability to become a variety of other final, specialized types of cells.
The end result is that such conventional culture conditions often suffer large variability, and make it extremely difficult for scientists to tease out the impact of individual molecules on experimental results.
"Stem cell applications and studies have been hampered by using undefined culture conditions" says Sheng Ding, an assistant professor at Scripps Research who led the research.
Feeder cells can also introduce viral and other forms of contamination that may lead to rejection of stem cells by the human immune system, among other problems.
Ding and his colleagues set out to solve these culturing problems using high-throughput screening of a Scripps Research library of tens of thousands of synthetic small molecules in search of a compound that could eliminate the need for feeder cells and added factors. This initial screening led to the discovery of a class of pyrimidines that improved cell growth. Later, the team produced a library of analogs of this class that proved to include a single co
'"/>
Contact: Keith McKeown
kmckeown@scripps.edu
858-784-8134
Scripps Research Institute
31-Oct-2006