The huge potential of agricultural soils to reduce greenhouse gases and increase production at the same time has been reinforced by new research findings at NSW Department of Primary Industries' (DPI) Wollongbar Agricultural Institute.
Trials of agrichar - a product hailed as a saviour of Australia's carbon-depleted soils and the environment - have doubled and, in one case, tripled crop growth when applied at the rate of 10 tonnes per hectare.
Agrichar is a black carbon byproduct of a process called pyrolysis, which involves heating green waste or other biomass without oxygen to generate renewable energy.
Tim Flannery, Australian of the Year and renowned scientist, conservationist, writer and explorer, is a major advocate of agrichar and pyrolysis.
In The Bulletin magazine, Flannery recently ranked "fostering pyrolysis-based technologies" fourth among his five steps for saving the planet, because they convert crop waste into fuel and agrichar which can be used to enhance soil fertility and store carbon long-term.
NSW DPI senior research scientist Dr Lukas Van Zwieten said soils naturally emit about 10 times more greenhouse gas on a global scale than the burning of fossil fuels.
"So it is not surprising there is so much interest in a technology to create clean energy that also locks up carbon in the soil for the long term and lifts agricultural production," he said.
The trials at Wollongbar have focused on the benefits of agrichar to agricultural productivity.
"When applied at 10t/ha, the biomass of wheat was tripled and of soybeans was more than doubled," said Dr Van Zwieten.
"This percentage increase remained the same when applications of nitrogen fertiliser were added to both the agrichar and the control plots.
"For the wheat, agrichar alone was about as beneficial for yields as using nitrogen fertiliser only. "And that is without considering the other benefits of agrichar."
Regarding soil che
'"/>
Contact: Joanne Finlay
joanne.finlay@dpi.nsw.gov.au
61-263-913-171
New South Wales Department of Primary Industries
31-May-2007