Washington, D.C. -- In this era of molecular medicine, controversy among cancer researchers is increasing as to whether the laboratory cells they study -- and upon which human treatment is based -- accurately reflect the biology of "real" tumors growing in a person's body. Some argue that cancer cells that learn to live in a flat lab dish cannot reflect cancer in the body, but others say that without any other way to study cancer, they seem to have performed well.
Now, researchers at the Lombardi Comprehensive Cancer Center report in the December 2006 (available online November 1) issue of the International Journal of Oncology that the molecular profiles seen in a group of heavily used breast cancer laboratory cell lines significantly resemble those found in human tumors.
"We have provided an answer to this dispute, at least for cell lines that represent a majority of breast cancer cases," said the study's lead author, Robert Clarke, Ph.D., D.Sc., a Professor of Oncology and Physiology & Biophysics at Georgetown University Medical Center.
"Researchers -- and by extension, breast cancer patients -- can now have more confidence in these laboratory cell line models, which they use as a basis to understand the disease and design new therapies," Clarke said.
The research team, which includes scientists from Scotland and Virginia, specifically found that three popular laboratory cultures of estrogen-sensitive breast cancer (which represents about 70 percent of the disease) share a very similar genetic profile to tumors extracted from human breasts.
The finding is important because breast cancer researchers are now using the long-existing laboratory cell lines to tease out the specific genes and proteins that are important to both development and treatment of the disease.
These lines (MCF-7, T47D, ZR-75-1) were created decades ago -- one is more than 30 years old -- from cells collected from the lungs of sev
'"/>
Contact: Laura Cavender
lsc6@georgetown.edu
202-687-5100
Georgetown University Medical Center
2-Nov-2006