Idiopathic pulmonary fibrosis is a progressive disease that kills 40,000 Americans each year. Exposure to toxic environmental agents like beryllium and silica dust can trigger IPF, but in most cases, its cause remains a mystery.
"The disease is devastating to the patients who have it, and to the physicians who have no effective ways to treat it," says Bethany B. Moore, Ph.D., an assistant professor of internal medicine at the U-M Medical School. Working with Galen B. Toews, M.D. a professor of internal medicine and chief of pulmonary and critical care medicine and other Medical School researchers, Moore studies the cells and signaling pathways involved in IPF.
"IPF gradually destroys air sacs in the lung and replaces them with scar tissue making it difficult and eventually impossible for patients to breathe," Moore says. "Most patients aren't diagnosed until the disease is in an advanced stage, and they often die within two years of diagnosis."
By learning more about the basic mechanisms of the disease, U-M scientists hope to uncover new information that could lead to therapeutic drugs to block progressive lung damage or diagnostic tests to make early detection possible.
Moore will present the latest results from her IPF research in a May 23 poster presentation at the American Thoracic Society meeting taking place May 19-24 in San Diego.
Moore studies fibrocytes primitive cells derived from bone marrow that help repair and restore damaged tissue in the body. When lung tissue is injured, damaged cells send out biochemical distress signals that draw fibrocytes from the bloodstream to the injured area. Once in the lung, fibrocytes turn into fibro
'"/>
Contact: Sally Pobojewski
pobo@umich.edu
734-615-6912
University of Michigan Health System
23-May-2006