University of Chicago chemists have demonstrated for the first time how to use a simple laboratory model consisting of only a few chemical reactions to predict when and where blood clotting will occur. The scientists used microfluidics, a technique that allowed them to probe blood clotting on surfaces that mimic vascular damage on the micron scale, a unit of measurement much narrower than the diameter of a human hair.
Although scientists understand what occurs during many of the 80 individual chemical reactions involved in blood clotting, many questions about the dynamics of the entire reaction network remain. Rustem Ismagilov, Associate Professor in Chemistry at the University of Chicago, and graduate students Christian Kastrup, Matthew Runyon and Feng Shen have now developed a technique that will enable scientists to understand the rules governing complex biological reaction networks. They will detail their technique in the online early edition of the Oct. 16-20 issue of the Proceedings of the National Academy of Sciences.
Life and death literally depend on a finely tuned blood-clotting system. "Clotting has to occur at the right place at the right time," Ismagilov said. "A strong, rapid clotting response is essential to stop bleeding at a wound, but such a clotting response at the wrong spot can block blood vessels and can be life-threatening."
In the past, scientists have typically examined the blood-clotting network using flasks containing homogenous mixtures-the test fluids were the same throughout. But the contents of the circulatory system are not homogeneous, said Kastrup, a Ph.D. student in chemistry and the PNAS article's lead author. One of the great virtues of microfluidics technology is its ability to control complex reactions at critical times and locations.
"The blood-clotting system contains both fluids and surfaces in an elaborate spatial environment, where localization of chemicals is very import
'"/>
Contact: Steve Koppes
s-koppes@uchicago.edu
773-702-8366
University of Chicago
16-Oct-2006