"Maize is a very exciting genome, both in terms of the roles it has played in contemporary and historic plant genetics and because of its role in agriculture," says Richard K. Wilson, Ph.D., director of the GSC, professor of genetics and lead investigator on the project. "It's a top food source for humans and animals and a leading U.S. export."
The National Science Foundation, the U.S. Department of Agriculture and the Department of Energy allocated a total of $32 million for sequencing maize. The GSC maize genome project will receive $29.5 million of that funding.
"By sequencing the maize genome we'll understand more about the evolution of plant genomes and more specifically the evolution of the genomes of cereals, " says botanist Ralph Quatrano, Ph.D., Spencer T. Olin Professor and chair of the Department of Biology at Washington University's School of Arts and Sciences.
Maize is found in thousands of products in supermarkets and stores. The maize genome's 2.5 billion base pairs in 10 chromosomes make it nearly as long as the human genome, which has 2.9 billion base pairs in 23 chromosomes. When completed, maize will be the largest plant genome sequenced.
Although smaller than the human genome, the maize genome is estimated to contain approximately twice as many genes: 50,000 to 60,000 genes, while the human genome has about 26,000. The maize genome also has large repetitive stretches and regions devoid of genes that will make sequencing challenging.
"It's going to be like trying to put together a jigsaw puzzle with lots of blue sky and very few pieces with landscape," Wilson says. "We'll be working to minimize our data collection on the blue sky and maximize it on the landscape, covering t
'"/>
Contact: Michael C. Purdy
purdym@wustl.edu
314-286-0122
Washington University School of Medicine
15-Nov-2005