It doesn't look appetizing: when Ustilago maydis attacks a maize plant, its cobs bear hideous tumours rather than crunchy niblets. So far, no effective means of combating the maize smut pathogen has been found. However, an international team has now made significant progress in the search for a solution. Led by researchers from the Max Planck Institute for Terrestrial Microbiology in Marburg, the scientists have analysed the U. maydis genome. Among the 7,000 genes of the fungus, they have found some with which the fungus lives at the expense of its host plant - without killing it. These genes probably also help the fungus to circumvent the plants defences. Researchers are now hoping to apply these findings to other fungi, which like Ustilago maydis depend on living plants (Nature, November 2, 2006).
It doesn't look appetizing: when Ustilago maydis attacks a maize plant, its cobs bear hideous tumours rather than crunchy niblets. So far, no effective means of combating the maize smut pathogen has been found. However, an international team has now made significant progress in the search for a solution. Led by researchers from the Max Planck Institute for Terrestrial Microbiology in Marburg, the scientists have analysed the U. maydis genome. Among the 7,000 genes of the fungus, they have found some with which the fungus lives at the expense of its host plant - without killing it. These genes probably also help the fungus to circumvent the plant's defences. Researchers are now hoping to apply these findings to other fungi, which like Ustilago maydis depend on living plants (Nature, November 2, 2006).
In Mexico the galls of Ustilago maydis are considered to be a delicacy. To farmers in most other countries however, the tumours that develop on the maize cob are regarded as a nuisance. The fungus is certainly no
'"/>
Contact: Prof. Dr. Jrg Kmper
kaemper@mpi-marburg.mpg.de
49-642-117-8630
Max-Planck-Gesellschaft
14-Nov-2006