This question isn't as nonsensical as it may sound. When your brain processes the information coming from your eyes, it stores the information about an object's shape in one place and information about its color in another. So it's something of a miracle that the shapes and colors of each fruit are combined seamlessly into distinct objects when you look at them.
Exactly how the brain recombines these different types of visual information after it has broken them apart is called the "binding problem" and is currently the subject of considerable controversy in the neuroscience community. But the results of a brain mapping experiment, published online by the Proceedings of the National Academy of Sciences on July 29, provide significant new support for the theory that attention is the glue that cements visual information together as people scan complex visual scenes.
The study was a collaboration among Ren Marois, assistant professor of psychology at Vanderbilt; John C. Gore, who recently moved from Yale to become a Chancellor's University Professor at Vanderbilt; and Yale graduate student Keith M. Shafritz.
"There are more than a dozen places in the brain involved with processing visual information, each specializing in information with slightly different attributes," says Marois. "Some specialize in processing color, some specialize in processing shape, while others specialize in movement. These areas are not clustered together, but distributed widely around the back of the brain."
There are two leading theories about how the brain reintegrates this information.
One view proposes that the neurons in the scattered areas are bound together in a way that allows them to act simultaneously. When you look at a banana, the neurons that store information about the banana's shape fire simu
'"/>
Contact: David F. Salisbury
david.salisbury@vanderbilt.edu
615-343-6803
Vanderbilt University
1-Aug-2002