For the last decade, Taylor has been taking the detailed information of diagnostic imaging tools like MRI and CT scans and using it to form the basis of computer modeling programs that can help foresee the results of medical interventions.
On Feb. 21 at the annual meeting for the American Association for the Advancement of Science in Washington, D.C., Taylor will present his latest accomplishment: factoring in the flexibility of veins and arteries to his model of the cardiovascular system. The realistic response of blood vessels adds more predictive ability to earlier versions of his simulation, which assumed rigid vessel walls for simplicity.
"The physics of blood flow is so complicated that it is impossible to guess what will happen during a surgery," Taylor said.
Medical professionals now have access to powerful tools for acquiring and visualizing data, Taylor noted. "It is incredible what we can see, but what we need to be able to do to make a good decision is to project into the future," he said.
In other words, he said, "the diagnostic data tells us what is there, but we need to know the answers to the 'what if' questions." These questions include, "What if it is better to do nothing?" And, "What if the patient got a little better but there might have been something else that could have made him or her a lot better?"
Taylor's computer model incorporates imaging data into a Web-based tool that includes 3-D views and surgical sketchpads. Millions of complex equations inv
'"/>
Contact: Mitzi Baker
mitzibaker@stanford.edu
650-725-2106
Stanford University Medical Center
21-Feb-2005