They say their study, published in the Journal of the National Cancer Institute, is a proof of principle, conducted in mice, that shows this kind of strategy could be promising when developed for human use.
"This is the most effective homing strategy seen to date, much better than any viral delivery strategy tested so far," says Michael Andreeff, M.D., Ph.D., professor in the Departments of Blood and Marrow Transplantation and Leukemia. "It is remarkable that these cells can find tumors wherever they are and become part of them."
The new approach uses human mesenchymal stem cells (MSC), the body's natural tissue regenerators. Tissue that is injured sends signals to these unspecialized, progenitor cells, and they, in turn, migrate to the damage and morph into whatever kind of tissue - bone, fat, muscle, cartilage, tendons - is needed to repair the wound.
Tumors, however, are "never-healing wounds" that also signal these stem cells, and then use them to help build up "stromal," or connective tissue, that structurally supports and nurtures tumor growth, says Andreeff. "Tumors constantly remodel their architecture with the help of these special stem cells."
Andreeff, first author Matus Studeny, M.D., who was a research fellow in Andreeff's lab, and a group of six other researchers turned the tables on cancer, taking advantage of a tumor's ability to attract these stem cells.
They designed a novel delivery system by isolating a small quantity of MSC from bone marrow, and then greatly expanded those cells in the lab. The researchers then used a virus to deliver a particular gene that
'"/>
Contact: Heather Sessions
hrsessions@mdanderson.org
713-792-0661
University of Texas M. D. Anderson Cancer Center
2-Nov-2004