The researchers will apply new genome searching technologies to available samples and information from 465 families, including 979 individuals with autism, to identify genetic factors that contribute to the condition.
"Autism is quite likely to result from the combined effects of multiple, very subtle genetic changes that differ considerably from family to family, since no single reliable genetic cause has been found yet," says Aravinda Chakravarti, Ph.D., principal investigator of the project and director of the McKusick-Nathans Institute of Genetic Medicine at Hopkins. "We'll be looking for combinations of genetic mutations and extra or missing gene copies that are much less common, even in the affected group, than most scientists are used to considering. This is a huge undertaking."
Recent research suggests that as many as 1 of every 500 births is affected by autism, which is characterized by social and communication deficits and restricted and repetitive interests. Understanding the condition's genetic roots may reveal important clues to its biology, and hence targets for treating some of its effects or trying to prevent it.
"The molecular genetic study of autism provides one of the best scientific opportunities in medicine: the chance to identify the missing or abnormal signals that prevent full development of a small set of nerve cells in the brain," says project member Edwin Cook, M.D., director of the University of Chicago's Laboratory of Developmental Neuroscience and a child and adolescent psychiatrist who sees patients with autism. "Once we know the disrupted signals, we can begin the process of rational development of medical treatm
'"/>
Contact: Joanna Downer
jdowner1@jhmi.edu
410-614-5105
Johns Hopkins Medical Institutions
11-Oct-2004