The new findings, published online by the journal Science this week, are a key step toward understanding the intricate molecular processes that allow the body to recognize a cell infected by an invader and destroy it.
Ironically, the theory confirmed by the new results involves two cells bumping together -- the same thing that happened when Arup Chakraborty, Ph.D., professor of chemical engineering at Berkeley, called Andrey Shaw, M.D., professor of pathology and immunology at Washington University, and asked him to look over a new paper.
Chakraborty's original paper, later merged with Shaw's results to form the Science paper, featured a computational model of the immune synapse theory, a hypothesis formulated eight years earlier by Shaw and two coauthors in Washington University's Department of Pathology and Immunology, Michael Dustin, Ph.D., and Paul Allen, Ph.D.
The three had speculated that when T cells bump against another type of immune system cell, the antigen-presenting cell, proteins on the surface of both cells reorganize and interact at the point of contact, potentially enhancing the transmission of a key message to the T cell: "Invaders are here, start the attack!" Because nerve cells also have specialized structures at areas known as synapses where they pass messages to each other, the authors referred to the contact between the immune cells as an immune synapse.
Shaw and colleagues had shown through years of research that specialized synapse structures formed when antigen-presenting cells and T cells bumped into each other, and that those structures were stable for an unusuall
'"/>
Contact: Michael C. Purdy
purdym@msnotes.wustl.edu
314-286-0122
Washington University School of Medicine
25-Sep-2003