The new research was presented at the 34th Society for Neuroscience annual meeting in San Diego.
"The clinical implications of this type of basic science research are enormous," says Gyrgy Buzski, MD, PhD, of Rutgers University , an expert on neural circuits. "By understanding the communication process of normal neural circuits, we can determine ways to help those who experience an injury or have a disorder that has damaged their circuits and impaired their function."
For example, the research will likely aid the development of "thought-controlled prosthetic devices," which could help amputees or those with paralysis who can't use their limbs. Normally circuits of nerve cells in the brain constantly compute and transmit complex signals through the spinal cord and out peripheral nerves in order to move an arm, hand, leg, or foot. An injury that causes the loss of a limb or damage to the spinal cord can sever this communication line and prevent desired movement. In theory, a thought-controlled prosthetic device, also known as a brain-machine interface, could bypass the loss or damage by directly interpreting nerve cell signals and then launching movement in a prosthetic limb.
The development of these devices requires a two-pronged, parallel approach. "The first is the understanding of the self-organized nature of healthy neural circuits," says Buzski. "Second is the use of this information to control prosthetic devices and feed back information from them to the brain." Researchers will report the latest advances in device development in the press conference on prosthetic devices, which will follow this press conference. This session will focus on the
'"/>
Contact: Leah Ariniello
dawn@sfn.org
202-462-6688
Society for Neuroscience
24-Oct-2004