Researchers at Columbia University College of Physicians & Surgeons and the Albert Einstein College of Medicine have found, for the first time, that certain proteins maintain the nervous system architecture after the developing body lays down the wiring pattern. The finding may someday lead to a better understanding of some neurological diseases but, for now, is changing neuroscientists' fundamental understanding of nervous system anatomy.
The investigators, led by Dr. Oliver Hobert, P&S assistant professor of biochemistry and molecular biophysics, have identified a family of six proteins, called ZIGs, responsible for keeping the wiring of the nervous system in its proper place in the mature organism. The results will be published in the Jan. 25 issue of Science.
Although the researchers identified the proteins in C. elegans, a microscopic worm employed as a model invertebrate to study neurobiology, humans have proteins with similar structures. "Clinicians should now look at neurological diseases whose causes are unknown or even those that are known and see if analogous human ZIG proteins may be playing a role in the pathology," Dr. Hobert says.
Scientists study C. elegans even though it is a primitive organism because it shares enough characteristics of human biology to be of value for understanding basic life processes. Its fertilized egg goes through cell divisions that have been well characterized until becoming a 959-celled adult worm. The nervous system consists of approximately 300 neurons, including a brain-like structure in the head, sense organs in the head that respond to taste, smell, temperature and touch, dual nerve cords-a major right cord and a minor left cord--that run longitudinally along the ventral side of the animal close to the surface on which the worm wriggles, and other nerves. A nerve cord is a collection of nerve axons, long projections of neurons that allow communication between nerve cells or between nerve ce
'"/>
Contact: Annie Bayne
as862@columbia.edu
Columbia University Medical Center
4-Feb-2002