"Magnet-guided neurosurgery allows us to use a guidewire and catheter to manipulate surgical tools within the brain in ways that previously were impossible," said Dr. Leonard Cerullo, chairman of the department of Neurosurgery at Rush and founder, president and medical director of the Chicago Institute of Neurosurgery and Neuroresearch (CINN) medical group.
"Because we can enter the brain through a blood vessel that is accessed through a small incision in the upper thigh, we have the potential to substantially reduce the need to surgically open the skull and disrupt brain tissue in order to repair aneurysms and deliver stroke therapies. We hope this will result in more effective treatment, reduced costs and swifter recovery times," he noted.
The first patient, a 48-year-old man from Chicago, was successfully treated with the technology on Tuesday, December 10. He suffered from headaches and double vision caused by malformed blood vessels in the back of his head. Swelling of the blood vessels put pressure on the brain and caused the double vision.
The system uses a magnetic field, controlled by the physician using point and click devices, to deflect the tip of a specially designed guidewire or catheter that is mechanically pushed or pulled through the body. Unlike existing guidewires and catheters, the new guidewires and catheters can be advanced through a vessel as small as one millimeter and are designed to be flexible enough to make a turn angle sharper than 90 degrees.
Initially, neurosurgeons at Rush will use the system in a clinical trial to access clogged vessels in the brains of newly diagnosed stroke patients. They also plan clinical research p
'"/>
Contact: John Pontarelli
jpontare@rush.edu
312-942-5949
Rush University Medical Center
12-Dec-2002