Writing in the Sept. 1 issue of the Journal of Clinical Oncology, investigators led by Dana-Farber's Glenn Dranoff, M.D., report that the vaccine, made by inserting a key gene into a patient's own melanoma cells, prompted a powerful immune system attack on melanoma tumors in several patients who received it in a clinical trial. More than three years after the trial began, 10 of the 35 patients who initially enrolled were still alive, and four of them had no signs of disease.
These results, which are comparable to those obtained by Dranoff and his colleagues in earlier studies of similar, but harder-to-work-with vaccines, suggest the technique holds real promise as a useful treatment for metastatic (spreading) melanoma.
"Our findings show that an antitumor immune response to melanoma can be created using a vaccine that is safe and relatively easy to make," says Dranoff, the study's senior author. "The survival of 10 patients for more than three years is especially encouraging and raises the possibility that vaccination might be effective in combination with other, existing therapies."
Like all vaccines, the one developed by Dranoff and his colleagues seeks to intensify the body's normal immune-system attack on diseased cells. It is based on the idea that melanoma cells, which are normally camouflaged from the immune system, can be made to betray their presence in the body, sparking an especially vigorous immune response.
The vaccine is made by removing a portion of a patient's tumor and mixing it with specially equipped viruses, which carry a gene for a substance called granulocyte-macrophage colony-stimulating factor (GM-CSF). The viruses invade the melan
'"/>
Contact: Bill Schaller
william_schaller@dfci.harvard.edu
617-632-5357
Dana-Farber Cancer Institute
2-Sep-2003