But new research by Dean Felsher, MD, PhD, assistant professor of medicine (oncology) and of pathology at the Stanford University School of Medicine, suggests that cancer cells can be reformed. His work, published in the Oct. 10 advance online issue of Nature, could lead to new ways of treating the most common forms of cancer.
Felsher found that turning off just one cancer-causing gene is enough to eliminate aggressive, incurable liver tumors in mice in just four weeks. These cells still had the mutations that made them cancerous in the first place, except that one.
He had documented a similar phenomenon in bone cancer two years ago, but liver cancer is more common and difficult to cure. "This is a terrible cancer," said Felsher. "Anything that is encouraging in liver cancer may be important."
Liver cancer is formed in a type of cells called epithelial cells - the same ones that form cancers in the breast, colon and prostate. Felsher's findings about liver cancer could also apply to these types of cancer.
Felsher hopes his work pushes people to find drugs that specifically hamstring the protein in question: Myc (pronounced "mick"), which is one of the most commonly mutated oncogenes in cancer cells.
Myc protein acts as a cellular conductor, orchestrating messages that tell a cell to divide. Normal cells only make the protein when it's time to multiply. Cancer cells produce too much of this protein all the time, constantly prodding themselves to divide.
In his work, Felsher studied mice whose liver cells he had altered to carry a modified Myc gene. Unlike the normal gene, this one is constantly on.
'"/>
Contact: Amy Adams
amyadams@stanford.edu
650-723-3900
Stanford University Medical Center
10-Oct-2004