DURHAM, N.C. New and promising ultrasound techniques devised at Duke University's Pratt School of Engineering can "remotely palpate" tissues, detecting and in some cases characterizing breast abnormalities that are deeper and smaller than the 1-centimeter-sized lesions that physicians can detect by feel, said the lead author of a just-released study.
The technology has many other potential clinical applications, such as detecting clogged arteries and deep vein blood clots, Katheryn Nightingale, an assistant research professor of biomedical engineering, noted with her colleagues in the scientific report.
This method, called Acoustic Radiation Force Impulse (ARFI) imaging, is based upon the conventional palpation technique physicians use to characterize breast lesions with their fingers.
But ARFI "is a new radiation force-based imaging method that provides information about the local mechanical properties of tissue," wrote Nightingale and three other authors in the article published in the April 5 issue of Ultrasound in Medicine and Biology.
"It's effectively like putting your fingertips inside of the breast and pushing on a small region of about 1 to 2 millimeters," Nightingale said of ARFI imaging. The project's leader, she has been working on aspects of the technique since 1993 when she began her Ph.D. training at Duke.
The other journal authors are Mary Scott Soo, an associate professor in the Duke Medical Center radiology department; Roger Nightingale, Kathryn Nightingale's husband and an associate research professor of biomedical engineering who helped characterize the mechanical properties of target tissues; and Gregg Trahey, the James L. and Elizabeth M. Vincent Professor of Biomedical Engineering who has been working on the project with Nightingale since its inception.
Other members of the ARFI team include graduate students Mark Palmeri and Deborah Stutz, who are working on simulating the system and evaluat
'"/>
Contact: Monte Basgall
monte.basgall@duke.edu
919-681-8057
Duke University Medical Center
8-Apr-2002