Using an artificial gene they created, the researchers "switched on" a panel of genes that are normally silent in the muscle cells, causing them to morph into cells that show biochemical, physiological, and structural properties of neurons.
The researchers say the advance, published in the April 15 issue of Genes and Development, provides evidence that stem cells could be profoundly "flexible" -- able to develop into different cell types.
"It is amazing to know that the fate of a cell can be changed by a single molecule," says the lead author Sadhan Majumder, Ph.D., an associate professor in the Department of Cancer Genetics. "If we can redirect muscle progenitor cells to become cells that have the properties of neurons, it may be possible to use the same kind of technique to potentially change the fate of other stem cell types."
The work was conducted in laboratory cell cultures of "myoblasts," the progenitor muscle stem cells, and the new cells were then injected into the brains of healthy mice, where the cells did not cause any ill effects. Majumder says the next phase of the research is the "big test, whether these new cells can replace neurons that are damaged inside the body. That would be a remarkable step towards neuroregeneration."
To date, nerve cell regeneration from nonneural stem cells primarily has been studied using bone marrow cells, but mouse experiments that suggested these stem cells could convert to nerve cells have been controversial. Some investigators suspect that manipulated bone marrow cells are either contaminated with neural stem cells or get fused with neuronal stem cells present in the brain, and so only appeared t
'"/>
Contact: Heather Russell
hrrussel@mdanderson.org
713-792-0655
University of Texas M. D. Anderson Cancer Center
14-Apr-2004