PHILADELPHIA -- Researchers at the University of Pennsylvania School of Medicine are harnessing two new, non-invasive techniques to look more closely inside the working lungs - leading to early detection of diseases, like emphysema, before it becomes evident in other modes of imaging.
"Up until now, imaging the way lungs function in real time has been limited by conventional methods which result in rather low resolution images," comments Warren Gefter, MD, Chief of Thoracic Imaging in the Radiology Department at Penn. "We are developing a way to get a better look inside the lungs by polarizing atoms -- making them all spin in the same direction -- with magnetic resonance [MR], which allows the atoms to have a strong signal for sharper images."
Hyperpolarized 3He gas allows radiologists to observe the lung as gas flows in and out, giving them high resolution images of human ventilation. Combining several techniques enables researchers to measure the rate of diffusion of these helium gas molecules, which reflect the size of the air sacs in the lung. This, in turn, allows researchers to detect very early emphysema, even before it's evident on CT (computed tomography) - providing physicians with additional information in which to make diagnoses and offer treatment.
Gefter adds, "We have moved from imaging the structure to imaging the function of the lung to a scale well below a millimeter in size. It's truly groundbreaking."
To use this extremely powerful research tool, which provides accurate and precise measurements, patients must inhale the helium at the exact right time, after it's been exposed to a laser light to make all of the atoms spin in the same direction, creating the polarized helium, which then enters the lung.
Utilizing another new MR technique, Penn imaging researchers are pushing the scale of what we see in the lung down to an even smaller level -- to the cellular and intracellular level. I
'"/>
Contact: Susanne Hartman
susanne.hartman@uphs.upenn.edu
215-349-5964
University of Pennsylvania School of Medicine
14-Mar-2007