In research due to appear in an upcoming issue of the journal Chemical Communications, scientists at Rice University and The University of Texas M. D. Anderson Cancer Center describe a method for creating a new class of anti-cancer compounds that contain both tumor-targeting antibodies and nanoparticles called buckyballs. Buckyballs are soccer ball-shaped molecules of pure carbon that can each be loaded with several molecules of anticancer drugs like Taxol.
In the new research, the scientists found they could load as many as 40 buckyballs into a single skin-cancer antibody called ZME-018. Antibodies are large proteins created by the immune system to target and attack diseased or invading cells.
Previous work at M. D. Anderson has shown that ZME-018 can be used to deliver drugs directly into melanoma tumors, and work at Rice has shown that Taxol can be chemically attached to a buckyball.
"The idea that we can potentially carry more than one Taxol per buckyball is exciting, but the real advantage of fullerene immunotherapy over other targeted therapeutic agents is likely to be the buckyball's potential to carry multiple drug payloads, such as Taxol plus other chemotherapeutic drugs," said Rice's Lon Wilson, professor of chemistry. "Cancer cells can become drug resistant, and we hope to cut down on the possibility of their escaping treatment by attacking them with more than one kind of drug at a time."
Researchers have long dreamed of using antibodies like ZME-018 to better target chemotherapy drugs like Taxol, and M. D. Anderson's Michael G. Rosenblum, Ph.D., professor in the Department of Experimental Therapeutics and Chief of the Immunopharmacology
'"/>
Contact: Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University
21-Jun-2006