Although other similar signaling systems have been developed, the Cedars-Sinai research is the first to give physicians the flexibility to arbitrarily turn the gene expression on or off even in the presence of an immune response to adenovirus, as would be present in most patients undergoing clinical trials. This has been a major obstacle in bringing the testing of genetic therapies to humans in a clinical setting.
As reported in a study published in the January issue of the Journal of Virology, the development of a new delivery system that can more effectively regulate therapeutic gene expression has important implications for efforts to advance gene and stem cell therapy strategies that may ultimately be used to treat life-threatening neurodegenerative diseases in the clinical setting. The study, which involved laboratory rats, focused on the area of the brain that has already been the target for research into genetic therapies for Parkinson's disease.
"Since some diseases treated with gene therapy will require constant therapeutic expression while others may have periods of remission and therefore only require treatment during 'active' disease states, a system that can more closely monitor the 'how much' and 'when' the therapeutic gene is produced is a critically important tool in the development of gene therapy treatments that could help people suffering from Parkinson's and other diseases," said Maria Castro, Ph.D., co-director of the Board of Governors' Gene Therapeutic Research Institute at Cedars-Sinai and lead author of the study.
"Until now, researchers working to develop successful gene therapy for diseases such as Parkinson's hav
'"/>
Contact: Simi Singer
simi.singer@cshs.org
310-423-4768
Cedars-Sinai Medical Center
22-Dec-2005